Special Issue on Cognitive Digital Twins for Predictive Maintenance: Uncertainty and Risk Analysis
Submit Paper » The rapid evolution of mechanical systems and increasing industrial complexity have driven the need for advanced predictive maintenance strategies. Cognitive Digital Twins (CDTs), integrating AI, real-time data analytics, and cognitive computing, have emerged as a transformative solution. Unlike traditional digital twins, CDTs can learn, reason, and adapt, enabling more accurate and dynamic predictive maintenance. However, their reliability is challenged by modeling uncertainties, sensor noise, environmental variability, and unforeseen operational conditions. ...