Newsletter Subscription 📩

Dear colleagues, you are cordially invited to subscribe our quarterly newsletter for the latest updates on the ASCE-ASME Journal JRUES – both Part A and Part B. Click here to sign up

April 6, 2022 · 1 min · 32 words · Torsten Ilsemann

Special Collection on Advances in Bayesian Inference for Structural Health Monitoring (SC072A)

Submit Paper » Background Bayesian inference provides a fundamental probabilistic framework to quantify uncertainty, incorporate evolving information, and make informed decisions. Over the years it has attracted ever-growing interest in various fields of science and engineering. In structural health monitoring (SHM) the approach has been explored for addressing challenges in extracting actionable information from data for structural identification, load estimation, damage diagnosis and prognosis, and remaining useful life prediction, for unknown and potentially changing structure and environment. Amidst emerging technologies such as artificial intelligence, machine learning, and digital twin, there are opportunities for exploring Bayesian techniques along deep learning methods to better account for modeling errors and uncertainties. This special collection aims to create a collaborative research platform for academics and practitioners worldwide to present the latest advances in Bayesian inference for SHM, focusing on its applications in monitoring and decision-making, covering the targeted engineering systems of civil infrastructure, mechanical systems, and aerospace structures. ...

February 9, 2025 · 3 min · 535 words · Torsten Ilsemann

Newsletter January 2025 📩

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems - Call for Papers Part A: Civil Engineering, and Part B. Mechanical Engineering The Editorial Board of the ASCE-ASME Journal invites contributions presenting state-of-the-art research and best practices for addressing risk, disaster and failure-related challenges arising from uncertainty. We particularly welcome emerging research relating to availability and processing of big data, including data driven decision support, machine learning and further computational intelligence tools relating to risk and uncertainty. ...

January 27, 2025 · 12 min · 2408 words · Eleni Chatzi

Special Collection on Forward Uncertainty Quantification for Aleatory & Epistemic Uncertainties: Methodologies, Tools, and Applications (SC071A)

Submit Paper » Background Uncertainty Quantification (UQ) focuses on identifying, characterizing, and managing uncertainties in computational models and real-world systems. These uncertainties are classified into aleatory and epistemic types. Aleatory uncertainty, arising from inherent variability in natural systems, is irreducible, such as fluctuations in material properties. Epistemic uncertainty results from incomplete knowledge or assumptions in the modeling process and can be reduced with better information or models. Both types often coexist in practical problems, and quantifying them is essential for reliable predictions in various scientific and engineering disciplines. Forward Uncertainty Quantification (FUQ) is a specialized area within UQ that predicts how uncertain inputs affect model outputs, considering both aleatory and epistemic uncertainties. This process is vital for developing robust models that reflect real-world behavior under uncertainty. For example, FUQ helps ensure the safety and reliability of engineering structures by assessing how uncertainties influence their performance, aiding in decision-making, risk management, and optimization. ...

January 10, 2025 · 3 min · 510 words · Torsten Ilsemann

Special Issue on Design of Large-scale Complex Systems under Uncertainty: Translating Theory to Practice (SI068B)

Submit Paper » Large-scale systems are prevalent across critical infrastructure, manufacturing, offshore, automotive, aerospace, energy, and other sectors. These systems are inherently complex, and are characterized by the interactions among various components within the system and between the system and its environment. These systems are plagued with uncertainties stemming from various sources including incomplete or unreliable information, lack of data, and partially known physics. There is a growing demand for advanced techniques that can efficiently manage large-scale system complexity and result in robust and reliable design solutions with limited computational resources, ultimately minimizing failures with catastrophic consequences. ...

January 8, 2025 · 2 min · 380 words · Torsten Ilsemann

Newsletter September 2024 📩

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems - Call for Papers Part A: Civil Engineering, and Part B. Mechanical Engineering The Editorial Board of the ASCE-ASME Journal invites contributions presenting state-of-the-art research and best practices for addressing risk, disaster and failure-related challenges arising from uncertainty. We particularly welcome emerging research relating to availability and processing of big data, including data driven decision support, machine learning and further computational intelligence tools relating to risk and uncertainty. ...

September 27, 2024 · 11 min · 2184 words · Eleni Chatzi

Special Issue on Advances in Numerical and Experimental Methods for Uncertainty Quantification in Engineering (SC070A)

Submit Paper » Background Engineering systems and structures are often subject to a wide range of uncertainties arising from material properties, environmental conditions, manufacturing tolerances, operational fluctuations, etc. Probabilistic analysis is usually applied to describe these uncertainties, although more often than not they also involve epistemic uncertainties arising from modelling the randomness under insufficient information, and/or a lack of modelling details of the physical processes with computational simulators. Accurately quantifying these uncertainties is critical for designing robust and reliable engineering solutions. This Special Issue aims to highlight the latest developments and innovative approaches in the field of uncertainty quantification tailored specifically for engineering applications. ...

September 26, 2024 · 3 min · 474 words · Torsten Ilsemann

Special Collection on Advanced Numerical Techniques and Engineering Applications for Uncertainty Propagation in High-Dimensional Stochastic Systems (SC069A)

Submit Paper » Background This Special Collection (SC) aims to gather contributions to advance the state-of-the-art methods and applications of uncertainty propagation in high-dimensional stochastic systems. Effective uncertainty propagation is critical for rational decision-making, risk assessment, and optimization of engineering systems. Particularly, high-dimensional stochastic systems represent a significant class of problems encountered in various domains. Nevertheless, uncertainty propagation in high-dimensional settings poses significant challenges due to the “curse of dimensionality”. Traditional methods often become computationally prohibitive. Consequently, there is a growing need for advanced techniques to handle the complexity of high-dimensional systems accurately and efficiently. This SC focuses on efficient analytical, data-driven, and computational methods for uncertainty propagation, novel control techniques for stochastic systems, and advanced optimization approaches. Grounded in solid theory, these methods aim for real-world applications, bridging the gap between theory and practice with practical solutions in aerospace, civil engineering, energy systems, and environmental modeling. ...

September 26, 2024 · 3 min · 557 words · Torsten Ilsemann

Special Collection on Uncertainty Modeling and Quantification of Numerical Methods in Geotechnics (SC066A)

Submit Paper » Aims & Scope This Special Collection (SC) aims to provide a dedicated space for in-depth exploration and dissemination of advancements in uncertainty modeling and quantification of numerical methods in geotechnical engineering. The primary goal of this SC is to feature emerging developments, which address the calibration of soil or rock constitutive models developed in recent time, data-driven and physics-informed models for soil or rock constitutive relations, database assessment of the variability in geotechnical numerical predictions, and benchmark exercises for geotechnical analyses by commercial software. The contributions are supposed to provide a deeper insight into the calibration and verification of numerical models in geotechnics, as well as the quantification of variability in numerical predictions of geo-structural response (e.g., deformation, capacity or stability). By establishing this SC, we aim to foster a collaborative environment that encourages researchers to contribute high-quality works, sharing insights and innovations in the field of uncertainty in geotechnical numerical methods. ...

July 2, 2024 · 3 min · 506 words · Torsten Ilsemann

Special Issue on Reliability Modelling and Assessment of Complex Engineering Systems with Mixed Uncertainty (SI067B)

Submit Paper » Engineering systems are increasingly complex. They need to meet advanced requirements for mission-critical fields with a low failure tolerance. As unexpected failures during the designed lifespan of a system may lead to catastrophic consequences, their reliability modeling and assessment are of utmost importance. The reliability modeling should achieve the assessment at a reasonable confidence level to help decision-makers arrive at sound decisions in practice. ...

June 8, 2024 · 2 min · 423 words · Torsten Ilsemann
Legal Notice      Contact